

The Score Stove.

For £20 it will cook and generate electricity To help over 2 billion poor people Powered by wood, dung or other fuel Potential to save 10 Mt Carbon per year

DIE 15 April 2010 Paul H. Riley Score Project Director

Why Score?

- 2 billion people cook on an open fire with no electricity
 - Smoke bad for health
- Over-use of scarce wood supply
- Many stove designs
 - Insufficient impact
- Understanding social context is key
 - Poverty < \$2 per day
 - Motivation, e.g. mobile phone
 - Inhibitors
 - Low power (20W) is enough to start
 - Familiarity with local culture

Photographs courtesy Practical Action

The Score Stove Project

- The Charity Practical Action and the Universities of City, Manchester, Nottingham, Queen Mary
- £2M research
 - fuel burning Stove that can cook, generate electricity and provide cooling for use in Developing Countries.
- 5 years started in 2007
 - research to 2010 thereafter exploitation part funded until 2012
- Both High Technology and Social Science content
- Target of 100 Watts electrical for £20 in 1 million quantities
 - with half the wood and no smoke
- World-wide interest
 - GTZ (SA), GTZ (Bangladesh)
 - in 60 publications, over 10 different languages
 - Score Community Launched
 - » engaging with 10 developing countries and growing

Market Survey

- Nepal survey (results confirmed in Kenya)
 - Yangalot village in Hagam
 - Husband see chart on right
 - Wife
 - » better cooking position
 - » low smoke
 - » better education for children
- Business case
 - Household:
 - » €1 per month saved on kerosene for lighting,
 - » Score pays back in < 3 years</p>
 - Village
 - » shop sells and maintains score to offset kerosene sales.
 - Country
 - » carbon credits
 - » cascade manufacturing.

Technology positioning

- < 5 times cheaper per installed watt than PV</p>
- Smoke free cooking
- Electricity generation
 - Provides real business case by displacing paraffin
 - Increases perceived value
 - Much bigger incentive to purchase than stove alone
- Rapid way to electrify remote regions
 - Local generation, no blackouts
 - Mass production
 - Self financing
 - Low bureaucracy overhead
 - Rapid disaster deployment when mains fails

Is Score wanted?

- Simulated Score Stove
 - 12 houses in Nepal
 - 10 20 W electrical
 - No smoke, less wood
 - Similar number in Kenya
- Satisfaction
 - 100% used electricity for lighting helping education, social
 - 80% used for radio
 - 32% mobile phone charging
 - » 16% sold electricity (i.e. promotes local commerce)

How does it work?

- Uses Thermo-Acoustics
 - Exciting new technology
 - No moving parts
 - Stirling engine with no pistons Relies on acoustic waves
 - » Making it cheap and reliable
 - Difficult to design but low cost manufacture
 - Used in Space probe and a Natural Gas liquefying plant
- Wood or dung is burnt
 - A specially shaped pipe gets red hot
 - Another part of the pipe is cooled
 - This generates sound at 100 Hz
 - » very noisy inside >170 dBA
 - » Outside whisper quiet hum
 - Then a Linear Alternator turns the sound into electricity
- The waste heat is used for cooking

- 100We electricity whilst cooking
- Uses half the wood of 3 stone stove
- 1.6kWth for cooking hob, or space heating
- 1.7kWth for water sanitation or space heating
 - No emissions into house
- Electricity can be used for:
 - Lighting
 - Mobile phone charging
 - Radio/ TV / Computer
 - Sale to neighbours

Product availability

The University of **Nottingham**

	Available	Cost*	Elec.	Hob	Fuel	Volume	Comments	
Score [™] stove1	April 2009	€200	no	2	Wood	Market driven	Third generation smoke free stove with chimney	
Score [™] stove2	2010	€ 1200	>15W	2	Prop.	~10	As Stove 1 with 12V electrical output. For testing only	
Score [™] stove2.3	2011	€350	>30W	2	Wood Or Dung	~140	As Stove 1 with 12V electrical output. For testing only	
Score [™] stove2.5	2012	€100	>30W	2	Wood or Dung	1000's	First production units	
Score [™] stove3	>2012	~€30*	100W	1 or 2	Wood Dung Or other	60Million – 2 Billion**	First very low cost units. Power is available to the load after the battery storage. Battery extra.	

* Wholesale cost as delivered to capital city of country

** 2 billion at 30 Euros, 60 million at 90 Euros

Business Model Deployment

The University of

Nottingham

- Big aspirations
 - Benefit of large scale manufacture (10M – 100Million units PA)
 - Provide global solution, not piecemeal
 - Total solution, cradle to grave
- Sales and Marketing
 - Local chiefs
 - NGO's
 - Governments, local and development agencies
 - Energy Utilities
- Supply chain
 - Source parts from appropriate places
 - Training
 - Maintenance
 - Appropriate Manufacturing locations to minimise price
 - Reputation control
- Finance
 - Micro-finance
 - Payback at 3 levels
 - » Individual ~3 years due to paraffin displacement
 - » Village
 - » Country
 - Grant leverage for very poor

Acknowledgements

- The Score project is funded by EPSRC, the UK Engineering and Physical Research Council.
- Thanks to the Score Team
 - Professor Chris Lawn, Dr Catherine Gardner
 - » Queen Mary University London,
 - Dr Artur Jaworski, Dr Zhibin Yu
 - » University of Manchester
 - Dr Keith Pullen and Dr Ron Dennis
 - » City University London
 - Dr Teo Sanchez
 - » Practical Action
 - Professor Mark Johnson, and Dr Chitta Saha.
 - » My Nottingham colleagues

Current Stove and Thermo-acoustic Duct Design for a Travelling Wave

Early demonstrator, Nottingham

The University of

B & C speaker : $\begin{array}{l} \mathsf{R}_{\mathrm{c}} = \ 5.5 \ \Omega \\ \mathsf{F}_{\mathrm{n}} = \ 40 \ \mathsf{Hz} \end{array}$ $Q_{ms} = 4.5$

Load	fn(Hz)	HHX (°C)	AHX (°C)	P ₁ (mBar)	V _L (V)	I _L (A)	P _{out}
36 Ω	74	414	47	40	19.5	0.557	10.8 W
24 V battery	74	412	46	42	29.6	0.662	19.6 VA

SCORE Stove design City University

SCORE Stove manufacture City University

Travelling wave design, Manchester

The Principle of the 'Standing-Wave' Thermoacoustic Engine (Yu and Jaworski, 2009)

Gas displacement

Gas "parcel" volume

The University of

Nottingham