Fungibility and the Choice of Aid Modalities

The Red Herring Revisited

Stefan Leiderer
Bonn, 6. December 2012
Main Concerns in the Policy Debate on Aid Modalities

Strong empirical arguments for programme-based aid over project aid

- Transaction costs: administrative cost and inefficiencies due to fragmentation and misalignment
- Ownership and sustainability

But: fiduciary risk of PBAs

- Risk that aid resources are not (or not efficiently) used for the purposes intended by the donor
- Main reason: fungibility (aid money does not stick)
The Choice of Aid Modalities

Does it really make a difference?

✓ Does fiduciary risk due to fungibility really differ fundamentally between aid modalities?
✓ If it does, what can donors do to about it?
A Basic Model of Aid Modalities
A Basic Fungibility Model

Known 'technology' for poverty reduction

Two categories of public expenditure:
- pro-poor expenditure ppe
- other non-poverty-reducing expenditure x_0

Recipient government maximizes utility (or political support) function:

$$W^G = ppe^\Theta x_0^{1-\Theta} \quad s.t. \quad ppe + x_0 \leq Y + T \quad 0 < \Theta < 1$$

Altruistic donor:

$$W^D = ppe \quad T \leq A$$

One period, different aid modalities
Aid Modalities

Project Aid
- Donor spends aid directly on pro-poor expenditure: \(T = ppe^D \)

General Budget Support
- Non-earmarked aid transfer: \(T = A \)

Aid on Delivery / Results-based Aid
- Amount transferred conditional on government's own effort (expenditure): \(T = \varepsilon \cdot ppe^a \)
Basic Case: Full Information
Autarky

\[x_0^a = (1 - \Theta)Y \]

\[ppe^a = \Theta Y \]
General Budget Support

\[x_0^* = (1 - \Theta)(Y + A) \]

\[ppe^* = \Theta(Y + A) \]
$x_0^* = (1 - \Theta)(Y + A)$
Partially Fungible Project Aid
Partially Fungible Project Aid

The diagram illustrates the concept of partially fungible project aid. The axes are labeled x_0 and $Y + A_{ppe}$, with points O, Y, A, and E. The line t_o and the point E are also indicated on the graph.
Aid on Delivery

![Graph showing aid on delivery](image)
Aid on Delivery
Aid on Delivery without Fungibility

\[\varepsilon = \frac{A}{\Theta Y} \]
Aid on Delivery with Fungibility

\[\epsilon = \frac{A}{\Theta Y} \]
Aid on Delivery with Fungibility

\[x_0 = (1 - \Theta)(Y + A) \]

\[ppe^* = \Theta(Y + A) \]

\[\varepsilon \in \frac{A}{\Theta Y A} \]
Fungible Aid on Delivery with Fully Informed Donor

\[\frac{A}{Y} \leq 1 - \Theta \]

\[\varepsilon = \frac{A}{\Theta Y + A} \]

\[x_0^* = (1 - \Theta)Y \]

\[ppe^* = \Theta Y + A \]
Fungible Aid on Delivery with Fully Informed Donor

\[1 - \Theta < \frac{A}{Y} < \frac{1 - \Theta}{\Theta} \]

\[\frac{A}{Y} < 1 \]

\[x_0 = A \]

\[\mathcal{F} \]

\[\mathcal{H} \]

\[ppe^* = Y \]

\[\varepsilon = \frac{A}{Y} \]
\[
\frac{1 - \Theta}{\Theta} < \frac{A}{Y} < 1 \quad \left(\text{or} \quad \Theta > \frac{Y}{Y + A} \right)
\]
Fungible Aid on Delivery with Fully Informed Donor

\[\frac{A}{Y} > 1 \]

\[\Theta \geq \frac{Y}{Y + A} \]

\[\varepsilon = \frac{A}{Y} \]
Fungible Aid on Delivery with Fully Informed Donor

\[
\frac{A}{Y} > 1 \quad \Theta < \frac{Y}{Y + A}
\]

\[
x_0^* = A
\]

\[
\epsilon = \frac{A}{Y}
\]

\[
pp^e = Y
\]

\[
pp^e = Y
\]
Fungible Aid on Delivery with Fully Informed Donor

\[A' = (1 - \Theta)Y \]

\[\Theta < \frac{Y}{Y + A} \]

\[x_0^* = (1 - \Theta)Y \]

\[\epsilon = 1 - \Theta \]

\[ppe^* = Y \]
Aid Effectiveness with full information

<table>
<thead>
<tr>
<th>Aid Modality</th>
<th>Aid Dependency (Donor Utility)</th>
<th>Government Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBS</td>
<td>$\Theta(Y + A)$</td>
<td>$[\Theta(Y + A)]^\Theta \cdot [(1 - \Theta)(Y + A)]^{1-\Theta}$</td>
</tr>
<tr>
<td>Project Aid</td>
<td>$\frac{A}{Y} > \frac{\Theta}{1-\Theta}$</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>$\frac{A}{Y} \leq \frac{\Theta}{1-\Theta}$</td>
<td>$\Theta(Y + A)$</td>
</tr>
<tr>
<td>AoD</td>
<td>$\frac{A}{Y} \leq 1 - \Theta$</td>
<td>$\Theta Y + A$</td>
</tr>
<tr>
<td></td>
<td>$\frac{1-\Theta}{\Theta} > \frac{A}{Y} > 1 - \Theta$</td>
<td>Y^*</td>
</tr>
<tr>
<td></td>
<td>$\frac{A}{Y} \geq \frac{1-\Theta}{\Theta}$</td>
<td>$\Theta(Y + A)$</td>
</tr>
</tbody>
</table>

* Assuming the donor only disburses the amount necessary to achieve $ppe = Y$, but ignoring any possible positive or negative utility derived from undischursed aid funds.

© 2012 German Development Institute
Relative Effectiveness of Aid Modalities

$$\frac{A}{Y} = \frac{\Theta}{1 - \Theta}$$

$$\frac{A}{Y} = \frac{1 - \Theta}{\Theta}$$

Project

GBS

AoD
Preferred Aid Modalities

Donor

\[
\frac{A}{Y}
\]

\[
\theta
\]

Project > GBS ≈ AoD

Project > AoD > GBS

AoD > Project > GBS

AoD > GBS ≈ Project

Government

\[
\frac{A}{Y}
\]

\[
\theta
\]

GBS ≈ AoD > Project

GBS > Project > AoD

GBS > Project > AoD

GBS ≈ Project > AoD

GBS ≈ AoD ≈ Project

© 2012 German Development Institute
Donor knows A, Y and functional form of W^G

θ is private information of the government

Donor bases her decision on aid modality on government‘s ‘signal‘ (cheap talk)
Case A: Project versus GBS

Donor gives GBS for

\[\tilde{\Theta} \geq \frac{A}{Y + A} \]

Donor gives project aid for

\[\tilde{\Theta} < \frac{A}{Y + A} \]
Case A: Project versus GBS

\[\Theta \geq \frac{A}{Y + A} \]

\[\tilde{\Theta} = \Theta \]
Case A: Project versus GBS

\[
\Theta < \frac{A}{Y + A}
\]

\[
\bar{\Theta} \geq \frac{A}{Y + A}
\]
Case B: Project versus AoD

Donor gives AoD for

Donor gives project aid for

Donor is indifferent for

\[1 > \frac{A}{Y} < \frac{1 - \tilde{\Theta}}{\tilde{\Theta}} \]

\[1 < \frac{A}{Y} > \frac{\tilde{\Theta}}{1 - \tilde{\Theta}} \]

\[\frac{\tilde{\Theta}}{1 - \tilde{\Theta}} > \frac{A}{Y} > \frac{1 - \tilde{\Theta}}{\tilde{\Theta}} \]
Aid Effectiveness with asymmetric information

<table>
<thead>
<tr>
<th>Modality Choice</th>
<th>$\frac{A}{Y}$</th>
<th>Θ</th>
<th>$\tilde{\Theta}$</th>
<th>$\frac{A}{Y+A}$</th>
<th>$\frac{A}{Y+A}$</th>
<th>$\Theta(Y+A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project / GBS</td>
<td>\forall</td>
<td>$\Theta < \frac{A}{Y+A}$</td>
<td>$\frac{A}{Y+A}$</td>
<td>$>$</td>
<td></td>
<td>$\Theta(Y+A)$</td>
</tr>
<tr>
<td></td>
<td>$\Theta \geq \frac{A}{Y+A}$</td>
<td>Θ</td>
<td>$=$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 1</td>
<td>$\Theta < \frac{Y}{Y+A}$</td>
<td>$\Theta - (1 - \Theta) \frac{A}{Y}$</td>
<td>$<$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project / AoD</td>
<td>> 1</td>
<td>$\Theta \geq \frac{Y}{Y+A}$</td>
<td>Θ</td>
<td>$=$</td>
<td>$\Theta(Y+A)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{Y}{Y+A} \leq \Theta < \frac{A}{Y+A}$</td>
<td>$\frac{A}{Y+A}$</td>
<td>$>$</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>$\Theta < \frac{Y}{Y+A}$</td>
<td>$\frac{A}{Y+A}$</td>
<td>$>$</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

ppe^*
Even with full information, GBS and project aid are equivalent over a wide range of aid dependency and commitment.

With full information: for low and moderate aid dependency, AoD is clearly more effective than project aid or GBS.

With asymmetric information, this advantage is eroded over a wide range of aid dependency / commitment combinations.
✓ Opposing incentives for government to over- or understate its commitment with GBS and AoD

✓ As long as multiple donors do not coordinate their different aid modalities, very limited scope to exploit this effect in order to reduce fiduciary risk

✓ With a coordinated modality mix, donors can induce “relatively uncommitted” governments to self-select into project aid

✓ For government commitment below some lower bound, government will access only part of the AoD tranche

✓ If recipient selectivity can exclude that government commitment is below this lower threshold, a coordinated GBS/AoD approach is always at least as effective as project aid
Conclusions

✓ Fungibility is indeed mostly a „red herring“ when it comes to aid modality choice
✓ Strong argument for programm-based aid, against project aid, even when abstracting from transaction costs
✓ With incomplete information about a recipient government‘s commitment to reduce poverty, a mix of budget support and RBA can reduce fiduciary risk
✓ But: donor coordination key to effectiveness of modality mix

Policy Message

✓ Donors should worry much less about which aid modality to choose over another and much more about their commitment to coordination and harmonization
Future Research
Proposal for future research

Necessary:

✓ Empirical research on effectiveness of PBAs and RBAs

But also:

✓ More formal research on political economy / incentives of aid and aid modalities on both sides of the aid relationship
✓ Make more use of what is already out there (for modelling and empirical testing)
Thank You!

Appendix
Autarky

\[x_0^a = (1 - \Theta)Y \]

\[ppe^a = \Theta Y \]
\[x_0^* = (1 - \Theta)(Y + A) \]

\[ppe^* = \Theta(Y + A) \]
\[x_0^* = (1 - \Theta)(Y + A) \]
Non-Fungible Project Aid

[Diagram showing a graph with axes labeled as x_0 and ppe, with points A, Y, Y+A, and E, and a line labeled t_θ.]
Base Case: Complete Information
Aid on Delivery without Fungibility

\[\varepsilon = \frac{A}{\Theta Y} \]
Aid on Delivery with Fungibility

\[\varepsilon = \frac{A}{\Theta Y} \]
Aid on Delivery with Fungibility

\[x_0^* = (1 - \Theta)(Y + A) \]

\[ppe^* = \Theta(Y + A) \]

\[\varepsilon \approx \frac{A}{\Theta \Theta Y A} \]}
Fungible Aid on Delivery with Fully Informed Donor

\[\frac{A}{Y} \leq 1 - \Theta \]

\[x_0^* = (1 - \Theta)Y \]

\[ppe^* = \Theta Y + A \]

\[\varepsilon = \frac{A}{\Theta Y + A} \]
Fungible Aid on Delivery with Fully Informed Donor

\[1 - \Theta < \frac{A}{Y} < \frac{1 - \Theta}{\Theta} \quad \frac{A}{Y} < 1 \]

\[x_0 = A \]

\[\varepsilon = \frac{A}{Y} \]

\[ppe^* = Y \]

\[T^{ADD} \]
\[
\frac{1-\Theta}{\Theta} < \frac{A}{Y} < 1 \quad \left(\text{or } \Theta > \frac{Y}{Y+A} \right)
\]
Fungible Aid on Delivery with Fully Informed Donor

\[\frac{A}{Y} > 1 \]
\[\Theta \geq \frac{Y}{Y + A} \]

\[\varepsilon = \frac{A}{Y} \]
Fungible Aid on Delivery with Fully Informed Donor

\[
\frac{A}{Y} > 1 \\
\Theta < \frac{Y}{Y + A}
\]

\[
x_0^* = A
\]

\[
\epsilon = \frac{A}{Y}
\]

\[
\text{pppe}^* = Y
\]
Fungible Aid on Delivery with Fully Informed Donor

\[A' = (1 - \Theta)Y \]

\[\Theta < \frac{Y}{Y + A} \]

\[x_0 = (1 - \Theta)Y \]

\[\epsilon = 1 - \Theta \]

\[ppe^* = Y \]
Case A: Project versus GBS

\[\Theta \geq \frac{A}{Y + A} \]

\[\tilde{\Theta} = \Theta \]
Case A: Project versus GBS

\[\Theta < \frac{A}{Y + A} \]

\[\tilde{\Theta} \geq \frac{A}{Y + A} \]
Case B: Project versus AoD

- Donor gives AoD for
 \[1 > \frac{A}{Y} < \frac{1 - \Theta}{\Theta} \]

- Donor gives project aid for
 \[1 < \frac{A}{Y} > \frac{\Theta}{1 - \Theta} \]

- Donor is indifferent for
 \[\frac{\Theta}{1 - \Theta} > \frac{A}{Y} > \frac{1 - \Theta}{\Theta} \]
Case B: Project versus AoD

\[
\frac{A}{Y} < 1 \quad \Theta < \frac{Y}{Y + A}
\]
Case B: Project versus AoD

\[\frac{A}{Y} < 1 \]

\[\Theta < \frac{Y}{Y + A} \]

\[\tilde{\Theta} = \Theta - (1 - \Theta) \frac{A}{Y} \]
Multi-Donor Aid
✓ Two donors D_1 and D_2
✓ Shares α and $1-\alpha$ of total aid budget A
✓ D_1 offers either GBS or project aid
✓ D_2 offers AoD and adjusts matching element ϵ
✓ Same information asymmetry regarding Θ
✓ Each donor only considers her own aid in her decision
✓ Government knows total aid budget A
Uncoordinated Aid

\[D_1 \text{ providing GBS} \]

\[D_1 \text{ providing project aid} \]

\[X_0 \quad Y \quad Y+A \quad \text{ppe} \]

\[(1-\alpha)A \quad \alpha A \]

\[\text{combined effective budget constraint} \]

© 2012 German Development Institute
Aid on Delivery

Understating Θ

$\Theta < \frac{\alpha A}{Y + \alpha A}$

Overstating Θ

$\tilde{\Theta} = \frac{\alpha A}{Y + \alpha A}$

$D_1 \quad \quad \quad D_2 \quad \quad \quad \text{combined effective budget constraint}$
Uncoordinated Aid

\[\Theta > \frac{\alpha A}{Y + \alpha A} \]

\[\Theta > \frac{Y}{Y + (1 - \alpha)A} \]

\[\tilde{\Theta} = \Theta \]

\[\Theta = \frac{\alpha A}{Y + \alpha A} \]

\[\Theta = \frac{Y}{Y + (1 - \alpha)A} \]

\[\tilde{\Theta} = \Theta \]

Combined effective budget constraint
Uncoordinated Aid

- Combined effective budget constraint

\[Y + \alpha A \]

\[Y+\alpha A \]

\[Y \]

\[Y \]

\[x_0 \]

\[t \]

\[F \]

\[P \]

\[K \]

\[Y + A \]

\[ppe \]
Aid Effectiveness with Uncoordinated Aid

Table 1: Aid Effectiveness with Uncoordinated Aid

<table>
<thead>
<tr>
<th>Condition</th>
<th>(\frac{A}{Y} \leq 1)</th>
<th>(\frac{A}{Y} > 1)</th>
</tr>
</thead>
</table>
| \(\Theta \leq \frac{Y}{Y+(1-\alpha)A} \) | \(\Theta < \frac{A}{Y+A} \left(1 - \frac{\alpha^2 A}{Y+\alpha^A}\right) \) | \(\Theta \geq \frac{Y}{Y+\alpha A} \\
| | \(\Theta \geq \frac{A}{Y+A} \left(1 - \frac{\alpha^2 A}{Y+\alpha^A}\right) \) | \(\Theta \leq \frac{\alpha A}{Y+\alpha A} \\
| | \(\Theta > \frac{\alpha A}{Y+\alpha A} \) | \(\Theta - (1 - \Theta - \alpha) \frac{A}{Y} \) |

| \(\frac{Y}{Y+\alpha A} < \frac{Y}{Y+\alpha A} \leq 1 \) | \(\Theta \geq \frac{Y}{Y+\alpha A} \) | \(\max(\frac{\alpha A}{Y+\alpha A}; \frac{Y}{Y+(1-\alpha)A})^* \) | \(\geq \) | \(\Theta(Y+A) \) |
| | \(\Theta < \frac{Y}{Y+\alpha A} \) | | | \(Y \) |

Table 2: Additional Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>(\frac{(1-\alpha)A}{Y})</th>
<th>(\Theta)</th>
<th>(\tilde{\Theta})</th>
<th>(\tilde{\Theta} \leq \Theta)</th>
<th>(\text{pp})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 \leq \frac{(1-\alpha)A}{Y})</td>
<td>(\Theta \geq \frac{Y}{Y+A})</td>
<td>(\tilde{\Theta} \leq \Theta)</td>
<td>\max(\frac{\alpha A}{Y+\alpha A}; \frac{(1-\alpha)A}{Y+(1-\alpha)A})^*)</td>
<td>(\geq)</td>
<td>(\Theta(Y+A))</td>
</tr>
<tr>
<td>(\frac{Y}{Y+\alpha A} \leq \frac{(1-\alpha)A}{Y} \leq 1)</td>
<td>(\Theta \geq \frac{Y}{Y+\alpha A})</td>
<td>(\tilde{\Theta} \leq \Theta)</td>
<td>\max(\frac{\alpha A}{Y+\alpha A}; \frac{Y}{Y+(1-\alpha)A})^*)</td>
<td>(\geq)</td>
<td>(\Theta(Y+A))</td>
</tr>
<tr>
<td>(\frac{Y}{Y+\alpha A} \geq \frac{(1-\alpha)A}{Y})</td>
<td>(\Theta \geq \frac{Y}{Y+\alpha A})</td>
<td>(\tilde{\Theta} \leq \Theta)</td>
<td>\max(\frac{\alpha A}{Y+\alpha A}; \frac{Y}{Y+(1-\alpha)A})^*)</td>
<td>(\geq)</td>
<td>(\Theta(Y+A))</td>
</tr>
</tbody>
</table>

*For \(\Theta > \max(\cdot; \cdot) \), the government can also set \(\tilde{\Theta} = \Theta \)

*\(\geq \) indicates a greater than or equal to relationship.
Coordinated Aid

☑ Two donors D₁ and D₂
☑ Shares α and 1-α of total aid budget A
☑ D₁ offers either GBS or project aid
☑ D₂ offers AoD and adjusts matching element ε
☑ Same information asymmetry regarding θ, but all other parameters known
☑ Donors coordinate shares α and 1-α allocated to GBS and AoD
☑ Donors can establish a threshold z for government signal below which they convert either the GBS tranche or the entire aid budget into project aid
Coordinated Aid without Threshold

\[x_0 \]

\[Y + \alpha A \]

\[Y \]

\[Y + A \]

\[\alpha A \]

\[(1-\alpha)A \]
Coordinated Aid: Indifference between project aid and partial disbursement of AoD

\[t_\beta = \frac{z(Y + \alpha A) + (1-\alpha)A}{Y + A} \]